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Abstract 

The fragmentation of cosmic string loops is discussed, and the results 

of a simulation of this process are presented. The simulation can evolve 

any of a large class of loops essentially exactly, including allowing fragments 

that collide to join together. Such reconnection enhances the production of 

small fragments, but not drastically. With or without reconnections, the 

fragmentation process produces a collection of non-self-intersecting loops 

whose typical length is on the order of the persistence length of the initial 

loop. 

1. Introduction 

It has been suggested that string-like topological defects produced in a phase tran- 

sition near the grand unification scale could have interesting cosmological conse- 

quences, and in particular that these “cosmic strings” might be the density inho- 

mogeneities responsible fox initiating the formation of such structures as galaxies 

and clusters of galaxies. (For reviews see Turok[l], and Vilenkin[2].) This sce- 

nario relies on the idea that the evolution of the string network eventually settles 

down to a “scaling solution” in which, at any time, there is a network of long 

strings plus many short loops, with the persistence length of the long string, the 

typical spacing between strings, and the typical loop size all being proportional to 
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the time t. In this case the energy density in string scales like t-s and remains 

a fixed fraction of the total energy density. To get such behavior it is necessary 

for strings to be able to reconnect the other way, or “intercommute”, when they 

intersect each other, an assumption now supported by several calculations [3,4]. 

Long strings can then intersect themselves and chop off closed loops, thus losing 

energy as they must for scaling to occur. The closed loops may also self-intersect 

and further break up (which is the topic of this paper), but if not they can at least 

decay by gravitational radiation, each loop losing energy at a rate l? = -I’G$ 

where JL is the string tension and r is a factor which depends on the loop’s shape 

but not on its length [5,6,7,8]. (Here and throughout this article c = 1.) It will 

also occur that loops will collide with and join onto long strings or other loops, so 

these processes need to be understood too. 

The simulations of Albrecht and Turok[S,lO], and of Bennett and Bouchet [ll], 

which numerically integrate the string equations of motion in an expanding uni- 

verse, taken together with analytical modelling [12,13,14], now strongly suggest 

that string evolution will indeed approach a scaling solution from a wide range of 

initial conditions. These two approaches are to some degree complementary: nu- 

merical simulations are necessary to check the assumptions and fix the parameters 

of analytical models, which in turn are necessary to understand the long time scale 

behavior of the network (such as the accumulation of short loops and their slow 

decay by gravitational radiation) since these simulations can study times only up 

to a few times the initial time before effects due to the finite size of the box in which 

the simulation is done become significant. Since these simulations discretire the 

string equations of motion they are also limited in the smallest scale phenomena 

that can be resolved. One approach to understanding possible resolution effects 

would be to vary the resolution and see what else changes. Another approach, 

taken here, is to study the simpler problem of a single loop in flat space-time, in 

which case discretization can be avoided. 

I have studied loop hagmentation in flat space-time by means of a simulation 

which, for a large class of initial conditions, evolves the string essentially exactly 

between crossings, describes the string after an intercommutation as precisely as 

before, and allows the production of arbitrarily small loops. It is known that 

there are many loop solutions which do not self-intersect [15,16,17], so it is natural 

to ask whether fragmentation eventually produces a collection of loops which are 

all non-self-intersecting; and, if it does, to study the properties of these stable 
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fragments. Scherrer and Press also have studied loop fragmentation by choosing 

loops randomly from a certain class and explicitly evolving them, and find that a 

finite number of non-self-intersecting fragments are produced [la]. The principle 

differences between the present work and theirs are that I sample the space of loops 

in a different way, more naturally related to the loops produced off long string; 

and that I include the joining together of fragments that collide. This reconnection 

may be important to understand since each intercommutation creates 4 kinks snd 

so the joining of two loops is not the inverse of one breaking in two. Since the 

statistical mechanics of string strongly favors short loops [19,20], it is reasonable 

to expect that the joining of kagments that collide and the associated creation of 

kinks will, by helping the string explore its phase space, lead in the end to smaller 

fragments. We will see that this is indeed what happens. 

The following section presents the equations of motion of a loop and describes 

the simulation. Section 3 presents results on the length and velocity distributions 

of the fragments and section 4 discusses the implications of these results for our 

understanding of the evolution of the whole string network. 

2 Loop Motion and the Simulation 

For loops whose size is small compared to t and large compared to the string width, 

the equations of motion may be taken to be:[21] 

q u, t) = X”(U) t) (1) 

~.x’=O (2) 

and 

(jc)’ + (x’)l = 1 (3) 

where k E 8x/& and x’ z 8x/&, and c is a parameter which varies along the 

string in such a way that the energy per unit CT is equal to a constant, p, the string 

tension. The general solution to Eq. (I) is 

x(u,t) = i [a(u-) + b(a+)] 

where O* = u-f t, and 

(a’)’ = (b’)’ = 1 
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in order to satisfy equations (2) and (3). Let Z be the total length of o around 

the loop. Then, in order for the loop to be closed, x(u,t) = x(o + Z,t) or 

- [a(o- + Z) - a(~-)] = [b(o+ + Z) - b(o+)] = A (61 

where A is B constant. Note that x(u, t + Z) = X(Q, t) + A. After a time bt = Z 

the loop returns to its original shape but translated by A, so the center of mass 

velocity is v = A/Z. In the center of mass frame v = 0 and, by Eq. (6), the 

functions a and b are both periodic. One may then think of a and b as closed 

curves, parametrized by their length in order to satisfy Eq. (5). A natural way to 

sample the space of such curves is to consider closed random walks. 

I consider the class of loops for which a and b are closed random walks of N 

equal sized straight steps. Equivalently a’ and b’ each take on N discrete values 

a’i and b’i lying on the unit sphere, with 

ia’i=$b’i=O (7) 

The curves a, b and x(u,t) = i [a(u-) + b(u+)] sll have a persistence length 

Lp = Z/N, (aside from the correlation among the 4 snd b{ due to the constraint 

expressed in Eq. (7), which should be only B small effect for large N). This provides 

a natural way of relating these loops to the full string network, which is also 

described in terms of a persistence length. 

The first task for the simulation is to generate random loops of this type, i.e. 

to generate N unit vectors ai which sum to zero, but are otherwise random, and 

similarly for the b: The code first chooses all the 4 to be along the x, y and z 

axes, making sure to go in the +x and -x directions an equal number of times, 

(and likewise for y and z,) to ensure that a is closed. Next a pair of these vectors 

is selected and they are rotated by a random angle about the axis defined by 

their mean. This operation preserves C 4, so a remains closed. This operation is 

repeated many times, selecting a different pair each time, in order to randomize 

the a{ . An independent set of b: is similarly constructed. 

After defining an initial ‘parent loop in this manner, the simulation searches 

for crossings in successive time intervals until it finds one. The intercommutation 

probability is taken to be 1, so this first crossing results in the loop breaking in 

two; subsequent crossings may be between distinct loops in which case they join 

together, or ‘reconnect’. The search for crossings then resumes, starting at the time 
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of the intercommutation. The motion of a (non-self-intersecting) loop is a periodic 

oscillation plus a constant velocity translation, so when all loops have survived 

for one period we know that none are self-intersecting. This is the criterion I use 

for the end of the fragmentation process. It is possible for distinct fragments to 

collide after this time, but this was found to be a rare occurence. Figure (1) shows 

a typical loop with N = 10, at a time shortly before the first crossing, and at a 

later time after fragmentation is complete. In order to save on computation time, 

fragments shorter than a certain length 1. are checked only for self-intersections 

and not for collisions with other strings. The effect of this cutoff is discussed in 

the following section. 

The simulation must find where the string crosses itself, i.e. find t and distinct 

or and oa for which x(ul,t) = x(ua, t). Loops of the type considered here initially 

have N evenly spaced kinks propagating in each direction (left and right) around 

the loop, joined by straight segments. When a left-moving kink and a right-moving 

kink pass each other, a straight segment appears between them and grows longer 

as they draw apart. Eventually a right-moving kink coming in from the left and 

a left-moving kink coming in from the right shrink the segment back down until 

it disappears. The simulation searches for crossings in a given time interval by 

finding all straight sections whose lifetimes overlap that interval, and checking 

each pair of them. On each straight segment, x’ and 2 are constant. The world 

sheet of such a segment is a parallelogram, a subset of the world-sheet of an infinite 

moving line which may be parametrized as x(o, t) = xs + x’u + 3 for a suitable 

choice of xo. The time t of crossing of two such lines, and the o1 and 01 where 

they cross, may easily be found in closed form; then if (~1, t) and (~2, t) lie in the 

regions of o,t space corresponding to their respective straight segments, a crossing 

has been found. In this way all pairs are checked and the earliest crossing in the 

time interval is found. 

Next the strings at the crossing point must be intercommuted, breaking one 

loop into two (if a loop has self-intersected), or joining two into one (if one loop has 

intersected another). Afterwards the string will still consist of straight segments 

and kinks. This means that each fragment may still be described by an a and a 

b which consist of straight sections, but now the lengths of these straight sections 

may be unequal, and since the fragment may have center of mass motion, a and 

b will in general not be closed. The simulation, taking this properly into account, 

eithex defines two new a (b) functions using the a (b) of the loop which has self- 
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intersected, or defines a new a (b) using the a’s (b’s) of the two loops which have 

intersected, as the case may be. The description of the string is just as precise 

after intercommutation as before. 

A peculiarity of the class of loops considered here is that fragments with less 

than 5 kinks are not produced. These loops will consist of straight segments and 

kinks in any frame, so 4 kinks (2 moving left, 2 right) is the minimum number 

since Eq. (7) must hold in the rest frame. Such a 4 kink loop is highly degenerate: 

in its rest frame its motion lies in a plane. Only s. set of zero measure of initial 

loops would allow the production of such loops. When a loop breaks in two, each 

fragment gets 2 of the 4 new kinks (1 left-, 1 right-moving), so if a 5 kink fragment 

is created it will have 3 old kinks, of which 2 will be going the same way. This 

implies that the shortest fragment that an initial loop can break off is fp = Z/N, 

the spacing between left-(right-)moving kinks. 

3 Results 

To find the probability, Po, that loops of the type described above do not self- 

intersect, a large number of loops (e.g. 10’ for N = 9) were checked for self- 

intersections. Figure (2) shows the results. The curve plotted is Po = 13(2.45-N). 

Before N has become very large, J’s is already tiny; in a stochastic fragmentation 

process characterized by a fixed probability of fragmentation q, values of q so close 

tq~unity would imply that a loop would almost always break into an infinite number 

of fragments [22,18,13,14], but this is not observed. Indeed, if reconnections are 

neglected, the fact that (for this class of loops) every fragment hss at least 5 kinks 

whereas each intercommutation produces only 4 means that in breaking a loop up 

one eventually runs out of kinks. If Nf fragments are produced (by N, - 1 self- 

intersections) the number of kinks will be 2N from the parent loop plus 4( Nt - 1) 

from intercommutations, and must be at least SNf, so Nf 5 2N - 4. When 

reconnections are included this limit does not hold. 

The length distribution of the fragments remaining when fragmentation is com- 

plete was measured for various values of N = L/4., and for comparison the re- 

connection of fragments that collide wsa included in some runs and neglected in 

others. Let n(z)& be the mean number of fragments per parent loop produced 

with z = L/L, lying between z and z + dz. Then the fraction of the parent 

loop’s energy which (on the average) goes into fragments in this size range is 
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N-‘zn(z)dz E c(z)dr. For small N (5 was the smallest N I considered), t(z) 

is peaked around n = 1.4, and the production of short loops is slightly enhanced 

by including reconnections. As N is increased, e(z) at small z increases. This 

increase is only slight if reconnections are neglected, but if they are included it is 

more pronounced: as N is increased the left side of the peak fills in until e(z) is 

roughly flat for small I. Figure (3), showing s(z) for N = 15 with and without re- 

connections, illustrates this behavior. At larger 2, E(Z) falls like z-a. The number 

of parent loops evolved to produce these plots was 90 with reconnections, and 400 

without. As mentioned above the simulation does not check loops shorter than 

a certain length f, for reconnection, although it does find their self-intersections 

and allow them to break up. Neglecting reconnection is therefore equivalent to 

setting L. = L/2. (There must be at least 2 fragments longer than L. to find a 

reconnection.) 

An interesting quantitative measure of the typical length of fragments produced 

is 
a = I Wzfd= 

Se(z)dr 
03) 

This is interesting because if it is assumed that all the loops produced at time t in 

the scaling solution have the same length f = y? then, in the radiation dominated 

era, the energy densities in loops (pt), in long string (p,) and in gravitational 

radiation from string (ps,) are related by [12,23,10] pi/p, o[ pF/p, cc 7;. Since 

in the scaling solution the persistence length is proportional to t we may say the 

loops have length 1= zf,, and that these density ratios are proportional to zi. If, 

as is actually the case, the loops have a range of sizes, we need to take P. mean, 

weighting each value of zf by the amount of energy going into loops of that size, 

which is how Q is defined. Thus a tells us how the length distribution of fragments 

produced effects the energy density in loops and in gravitational radiation. The 

effect of the cutoff length for reconnections was studied for N = 10 by doing 

runs with several different values oft, ranging down to & = O.Ur,. There was no 

sign of pathological behavior as 1, goes to zero. The mean number of fragments 

produced, < Nf >, was found to increase from 5. Nf >= 8.6 without reconnections 

to < Nf >= 17 for L, = O.l.f,,, while a only decreased about 10%. Figure (4) shows 

a as a function of N both with reconnections and without. The decrease of a with 

N is somewhat greater if reconnections are included, but in either case it remains 

of order unity for the values of N considered. We see that for these loops the 
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important length scale in fragmentation is the persistence length. Whereas in the 

stochastic fragmentation model the typical fragment length is determined by the 

parent’s length together with the fragmentation probability, for these loops it is 

essentially set by the persistence length alone. 

The time scale for fragmentation is on the order of the period of the parent 

loop. The mean time of the last intercommutation found was between 0.2L and 

0.4Z over the range of N and L, considered. 

The velocities of the fragments affect the evolution of the string in that faster 

fragments will be more likely to collide with other string, and because the red- 

shifting away of the center of mass motion of fragments removes energy from the 

string network. Also, structure formation by loops is affected by their motion [l]. 

Figure (5) shows the mean speed of fragments as a function of I. The data plotted 

is without reconnections; including reconnections left < v > the same within the 

statistical uncertainty. The mean speed of small fragments isaabout 0.55, while for 

larger fragments < v > falls of somewhat faster than z-i, the curve shown in Fig. 

(5) being < n >= 0.7~~“.‘. The mean fraction of the parent loop’s energy which 

goes into center of mass kinetic energy of the fragments increases from 0.109 f .007 

for N = 5 to 0.170f.006 for N = 20, with !. = 0.5; again no statistically significant 

variation with L. was observed. 

4 Conclusions 

For a large class of loops the fragmentation of an isolated loop produces a finite 

number of non-self-intersecting fragments, in agreement with the findings of Scher- 

rer and Press [18] for a different class of loops. The typical length of these stable 

fragments is on the order of the persistence length of the parent loop. This behav- 

ior is quite different from that predicted by a stochastic model of fragmentation. 

When the reconnection of fragments which collide is taken into account the typical 

fragment length decreases somewhat, but the above conclusions still hold. These 

results strongly suggest that loop fragmentation alone does not cause much energy 

to flow into loops much shorter than the network’s persistence length. This is 

good news for the numerical simulations of Albrecht and Turok and of Bennett 

and Bouchet. However it should be emphasized that I have here studied only 

an isolated parent loop, and the reconnections I have included in the calculation 

are only those between fragments of that parent loop. Actually, a loop breaking 



off the network can reconnect with long string or with one of the many slowly 

decaying loops produced at an earlier time. Understanding the reconnection of 

recently created loops to long string (or to each other) should just require a resolu- 

tion good compared to the persistence length, f,,, which the numerical simulations 

have. However, in the scaling solution, most of the energy in string is in loops 

much shorter than .$,; collisions involving these may have an important effect, but 

understanding this by simulation would require very high resolution. The under- 

standing of loop fragmentation derived from the simulation described herein should 

be helpful in constructing a good model of these processes; already it is apparent 

that reconnections serve to enhance the chopping of string into shorter pieces. 
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6 Figure Captions 



Figure 1: Fragmentation of a typical loop with N = 10, showing (left) the parent 
loop shortly before the first self-intersection, and (right) the fragments remaining 
at end of the fragmentation process. In this case there were 13 self-intersections 
and 3 reconnections resulting in 11 fragments. 

Figure 2: Probability PO that a parent loop has zero self-intersections, as a function 
of N. 

Figure 3: The function C(L), describing the energy going into fragments of different 
lengths, neglecting reconnections (top), and including them (bottom). 

Figure 4: The dependence of o on N, with reconnections and without. 

Figure 5: The mean speed of fragments as a function of z. 
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